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The influence of initial deviations from bath equilibrium on the motion of 
a Brownian particle in a harmonic chain is investigated by exact calculation. 
These initial condition effects, which are excluded by convention in standard 
projection operator treatments of relaxation processes, are found to be 
relatively long-lived, contrary to usual assumption. For weak, localized 
initial deviations from bath equilibrium these effects on the motion are 
small in magnitude and may be accounted for by a modified initial condition 
on the particle velocity. For initial deviations involving many bath particles 
these effects are more substantial and retention of their time dependence in 
the particle equation of motion is generally required. 
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1. I N T R O D U C T I O N  

The mechanical  system of  a heavy particle in a ha rmonic  chain has been the 

object of  extensive study, initiated by H e m m e r  (1~ and Rubin/2~,2 as a dy- 

namical  model  for Brownian  (B) mot ion.  The microscopic  der ivat ion of  the 

stochastic Langevin  and F o k k e r - P l a n c k  equat ion descriptions o f  the particle 
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2 For a correction to Ref. 2a see Ref. 3. 
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motion and the behavior of the velocity correlation function have been 
topics of particular study2 

A dynamical aspect of B particle motion in a harmonic lattice which has 
received essentially no attention is the question of the nature of initial con- 
dition effects on the particle motion. Thus, if only the B particle velocity 
initially deviates from equilibrium, the average equation of motion for the 
B particle velocity can be found by projection operation methods ~5> as 

M ( d V / c l t ) ( t )  = - as X ( t  - s ) V ( s )  (~) 

where M is the B particle mass and K ( t )  is a friction kernel. [Under suitable 
limiting conditions of large mass and long times, Eq. (1) can be approximated 
by the damping law 

f0" M ( d V / d t ) ( t )  = - ~ V( t ) ;  ~ ~ dt K ( t )  (2) 

which is the prediction of the stochastic B motion equations.] If, however, 
the bath particles are not initially in equilibrium, Eq. (1) will be amended to 
read 

f/ M ( d V / d t ) ( t )  = I ( t )  - ds K ( t  - s ) V ( s )  (3) 

where the initial condition term I ( t )  contains the explicit effects of the initial 
bath nonequilibrium state. 

In standard projection operator approaches to the B motion problem the 
bath is conventionally chosen to be in equilibrium initially and I ( t )  vanishes 
identically. Related assumptions are also made in a variety of relaxation 
problems ~ so that initial condition effects similarly vanish by construction. 
The effects of finite I ( t )  have often been intuitively (and tacitly) assumed to 
be short-lived and thus unimportant, so that after some supposed short 
transient time Eq. (1) or its Markovian modification Eq. (2) would be suitable 
descriptions. We have recently shown, <8~ however, that for a large B particle 
in a fluid, initial condition effects are rather long-lived, in contradiction with 
this assumption. This study was not strictly dynamical, however, since the 
predictions of macroscopic hydrodynamics were invoked in the analysis. In 
the present paper we investigate the lifetimes and effects on the particle 
motion of the initial condition term I ( t )  by exact dynamical calculations for 
a B particle in a linear oscillator chain when there are initial deviations from 
equilibrium in the B particle neighborhood. We again find that initial 

a For examples of the extensive literature see, in addition to the references cited in this 
paper, the references cited by Refs. 4, 10 and 12. 

4 See, e.g., Refs. 6. For additional information on initial condition effects for the Boltz- 
mann equation regime see Refs. 7. 
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condition effects are relatively long-lived, although their numerical impor- 
tance is small for a sufficiently heavy B particle and weak disturbances. 

In Section 2 we present the formal description of the model and initial 
condition effects on the B particle motion. Explicit results and numerical 
computations are presented for single-bath-particle and collective-bath- 
particle initial condition effects in Sections 3 and 4, respectively. Some 
mathematical details are relegated to the appendices. 

2. G E N E R A L  F O R M U L A T I O N  

2.1. B Part ic le  Equat ions of  M o t i o n  

The Hamiltonian for a Brownian particle of mass M linearly coupled to 
a linear harmonic oscillator chain with periodic boundary conditions and 
nearest-neighbor interactions is given by 

p2 
H =  ~-~ 

N 

+ 
t 2m 2j=-N 

(:~ o,1) 
(qj _ qj_l)2 + 2 [ ( Q _  ql)2 + (Q _ q_02] 

(4) 

where (pj = mvj, qj) are the momenta and positions (relative to equilibrium 
positions) of the 2N bath particles of mass m, while P = M V  and Q denote 
the momentum and (relative) position of the B particle. Here ~ = moJo2/4, 
where w0 is the fundamental frequency of the lattice. In the following we will 
only consider results for this model in the infinite lattice limit N--> oo. 

The linear equations of motion for the B particle associated with Eq. (4) 
have been previously solved (9> as an initial value problem with the result 
expressed in terms of the natural time scale for the system r = ~0t as 

V(r) = ~ {Gj(r)vj(O) + oJoGj(r)qj(0)} (5) 
J 

with Vo(r) ~ V(~) and qo(r) =- Q(r). The coefficients Gi(r ) and (~j(r) are 
related to the velocity correlation functions (/3-1 = kT)  

Gj(r) = ~rn,.(vjV(.r)), (6) 

and 

oJoCx,(r) = Wo dG,(r)/dr = - 5 ( F j  V(r))  (7) 

where Fj is the force on particle j, as can be seen by multiplying Eq. (5) by 
vj and forming the canonical ensemble equilibrium average, here denoted 
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by angular brackets. An explicit form for Gj(~-) has been derived by Kashi- 
wamura, (9) Fujiwara et al., (~~ and Cukier. (~) For values of the mass ratio 
tx = m / M  ~< 1 one has 

Gj(~)  = [1 + (ix - 1)r 'l 

x [J2H(~-) - 2(IX - 1) ~ (1 -- 2ix)P-lJ2ijl+2p(7)] 
p>-i 

(8 )  

where ~j0 is the Kronecker delta and J denotes a Bessel function of integer 
order: 

J2j(~-) = (2/7r) dO cos(~" sin 0) cos(2j0) (9) 

Expressions for Gj(T) are also available (~,11) for Ix > 1 and exhibit undamped 
oscillations due to a light impurity localized mode. (12) 

The basic starting point for our subsequent analysis of initial condition 
effects will be the exac t  "generalized Langevin equation" for the B particle 
in a harmonic lattice derived by Deutch and Silbey (5) by projection operator 
methods as 

(lo) F ( t )  = M ( d / d t ) V ( t )  = F*(t)  - ds K ( t  - s ) V ( s )  

o r  

F(-r) = m(~oo/ix)(d/d-r) V('r) = F+('r) - O2o ~ ds K('r  - s) V(s)  (11) 

in terms of the reduced time ~- = o~0t which we henceforth employ. In Eq. 
(11), F*(~-) is the M-independent force exerted by the bath oscillators at time 
~- on t h e f i x e d  B particle and the M-independent friction kernel 

K ( r )  = f i (FV*(r ) )  (12) 

with /3 = (kT) -1, is the equilibrium time correlation of this force. The 
kernel K ( r )  also governs the time development of the normalized B particle 
velocity correlation function G0(~-) = ( M f i ) ( V V ( . O )  according to 

J2 dGo('r)/d'r = -(~/rno2o 2) ds K ( 7  - s)Go(s) (13) 

For nonquadratic interaction potentials, the time development of the 
" r a n d o m "  force F+(~ -) and K(T) is governed by M-dependent Mori-projection 
operator dynamics. In this more general case the reduction to fixed particle 
quantities is only approximate. (8) 
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For the present model K(r) has been evaluated by several authors (I3) as 

K(r)  = (~coo/2)[Jo(r) + J2(r)] = ~cooJl(r)/r (14) 

with the friction constant given by 

g = coo 1 d ,  K0- )  = mco0 (15) 

For asymptotically long times one finds the slow decay (14) K(r)  
~.-a~ cos(r - 3rr/4). It is important to note for our further considerations 
that the strict validity of the Markovian result Eq. (2) requires a complete 
separation of time scales for correlations associated with a slowly moving B 
particle and the bath in the presence of the f i x ed  particle, e.g., Go(r) and 
K(r) ,  respectively. In units reduced by COo, the characteristic time of the 
former is O(/,-1) for small / ,  (cf. Section 3). The long lifetime of K(r)  will 
generally preclude this complete time-scale separation and results in devia- 
tions from the exponential decay in Eq. (2). 

2.2.  I n i t i a l  C o n d i t i o n  E f f e c t s  

With an average over the initial distribution of the entire system denoted 
by a superior bar, the average equation of motion for the B particle is ob- 
tained from Eq. (11) as 

V(T) = F*(-r) -- coo 1 ds K(.r - s )V(s)  = ; 

-= I ( , )  + Ffr(-) (16) 

where the initial condition term I(r)  ~ F+(r) and we have defined the average 
frictional force Ffr(r) due to the motion of the B particle by the second line. 
The explicit dependence of the average velocity V(r) on the initial velocity 
V(0) =- I/o and I(r)  is given by 

J; F ( , )  = Voao(,) + (~/~) ds 6o ( .  - s)I(s)  (17) 

as is easily verified from Eqs. (16) and (13). 5 Equations (16) and (17) thus 
describe the B particle motion in terms of I(r).  

We can now express I(r)  in terms of the initial deviations ~j(0) and Oj(0) 
from bath equilibrium as follows. First the general solution Eq. (5) for V(~-) 
is differentiated with respect to r. Then the generalized Langevin equation (11) 
is introduced for the resulting time derivatives of V(r) in the correlation 

5 The exact generalized Fokker-Planck equation for the present model (I5) also yields 
Eqs. (16) and (17). 
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functions Gj(r) and (~j(r), Eqs. (6) and (7). For example, Gj(~-) satisfies 

(~/tx)(~j(r) = ~<psF*(r)) - oog 1 ds K('r - s)Gj(s) (18) 

with a similar result for ~j(r). Finally, an average over an initial system dis- 
tribution yields the equation of motion (16) with I(r) given as the sum of 
individual particle contributions: 

I ( , )  = F*(~-) = B ~ [(pjF*(,)>#j(0) - <FjF*(~'))qj(0)] 
J 

= ~ [~j(,)~j(0) +/~j(,)qj(0)], -o = 0 (19) 
j- 

F o r j  ~ 0, 13j = ~ooai; f o r j  = 0, ]3j = -K(~-), Eq. (14). Thus the dynamics of 
initial condition effects are determined by the correlation functions of the 
f ixed  particle force F+(~ -) and the momentum of, or force on, bath particle j. 
We also note that, since I(r)  is thus independent of g, the previously mentioned 
persistent oscillatory behavior for ~ > 1 which precludes an approach to 
equilibrium is due only to the frictional term in Eq. (16), i.e., only -Prr(~') is 
undamped oscillatory. 

It remains to evaluate the correlation functions %0-) and/3j(r in I(r). 
This can be most readily accomplished by solving Eq. (18) for %.(~-)= 
/~<pjF*(T)> in terms of Gj(r) and K(~-), which are known by Eqs. (8) and (14), 
and then finding/3j(~) as fij(-r) = w0aj(~-). Since aj(~-) is independent of t~, we 
may set t~ = 1 in Eq. (8) for convenience and find, using standard Bessel 
function identities, ~ the explicit results 

%("r) = 2~ljlJ21jl(r)/-r, j # 0 
= 0, j = 0 (20) 

and 

fij(~) = �88162 - J21Jl+2(~)], j # 0 
= - r  j = 0 (21) 

Both aj(~) and/3j(r) for small j are displayed in Fig. 1 and show damped 
oscillations as the effect of the equilibrium fluctuation in the velocity of or force 
on bath particle j is experienced by the fixed B particle. As both functions 
decay asymptotically (14~ for long times as ~ (trigonometric function) x z-  3/2, 
the initial condition term I('r) will generally be long-lived on the z time scale 
and, if only small j contribute, will be of essentially the same lifetime as the 
friction kernel K(z), Eq. (14). This is the same general phenomenon we have 
previously found (8~ for the case of an immersed B particle in a fluid. 

In the following sections we investigate the explicit effects of initial 
conditions on the average B particle motion. For brevity, we limit our further 
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Fig. 1. ~(r)[~ and/3j(~)[~OJo versus r for small j values. 

considerations to initial deviations from equilibrium in momentum but not 
position, i.e., we henceforth assume that qj(0) = 0 for all j. 

We note here that initial condition effects also occur as corrections to 
the standard Fokker-Planck equation and are discussed elsewhere/TM 

3. S I N G L E - P A R T I C L E  I N I T I A L  C O N D I T I O N  E F F E C T S  

In this section we explicitly examine initial condition effects on the B 
particle motion for the case where, in addition to the B particle velocity, 
only the average velocity of a single bath particle j deviates initially from 
equilibrium. We focus attention on the calculation of the average quantities 
Vu>(T), I(n0-), and fffru>(~) for this case. Although we will present numerical 
calculations for only the casej  = 1, we obtain here results for generalj  which 
we will employ in Section 4. 

'The average B particle velocity V<n0- ) is most easily computed by averag- 
ing Eq. (5) over the initial system distribution to find 

Vu~0 -) = Vo[G0(T) + ajGj0-)] (22) 

where we have defined aj =- gj(O)/V(O) = oj(O)/Vo to gauge the magnitude 
of the initial deviation of bath particlej. Except for the special values/x = 1 
or 1/2, the Bessel function series (8) for the correlation functions Gj(r) is 
inconvenient for calculation. A more useful integral representation when 
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/~ ~< 1 is available, however, as ~n) 

/ ,~/2 

Gj(r) = (2flr)t~<~-Ojo)J. dO cos(r sin O)AOz, O) 

x [t~ cos 2 a cos(2ljl0 ) - (1 - t~) sin 0 cos 0 sin(2]jl0)] 
(23) 

where we have defined 

A(t~, 0) = b ~ + (1 - 2t0 sin ~ 0] -~ (24) 

so that  Eq. (22) can be written as 

Vu)(r) = dO cos 0. sin O)A(tz, O)Cj(iz, O) (25) 
.JO 

where 

G(t~ ,  0) = [1 + a~t~ c o s ( 2 1 j l 0 ) ]  c o s  ~ 0 
- aj(l - t0 sin 0 cos 0 sin(2lj]0 ) (26) 

For  the initial condition term it follows from Eqs. (19) and (20) that  
Iu)(r) is given by 

Y~J'(~) = 2~Voajljl&,j&)/~ 

= (4~Voajljl/~rr)j ~ dOcos(rsin 0) cos(2ljt0 ) (27) 

where we have used Eq. (9) for J2ul(r). With the aid of the relation b cos(bx) = 
d sin(bx)/dx and an integration by parts, Eq. (27) can be expressed as 

p ~12 

I(J)(r) = (~Vo)(2ad~r)j ~ dO sin(r sin O) cos 0 sin(21jl0 ) (28) 

The frictional force 

F~)(r) = (~/1~) dF(J)(r)/dr - I(n(~) 

can now be found from Eqs. (16), (25), and (28) as 

F~,)(~) = - ( ;  Vo)(2/~) 

[ ~/2 

x dO [sin(r sin 0)]A(/z, 0)(cos O)D~(tz, ~)) (29) 
,JO 

where 

D~-(/z, 0) = (sin 0 cos 0)[1 + a;p. cos(21j[0)] 
+ /~aj(t~ - sin ~ 0) sin(2[j[0) (30) 
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If we specialize now to the nearest-neighbor case j = 1, define al -= a, 
and include the a dependence in the notation, we find that I<1~(~; a) is self- 
evident from Eq. (28), while F~(~-; a) and ,~(a~fr ~-," a) are given by Eqs. (25) 
and (29), with the expressions for C~(tz, 0) and Da(iz, O) given, respectively, by 

C1(/~, 0) = (cos 2 0)(1 + at~ - 2a sin 2 0) (31) 

and 

DI(/~, 0) = (sin 0 cos 0)(1 + a/z + 2a/~ 2 - 4a/z sin 2 0) (31a) 

where standard trigonometric identities have been employed. 
Unless/z is small, there is essentially no time scale separation; the initial 

condition term is as long-lived as the frictional force, and both, as well as the 
velocity, show damped oscillatory behavior. For example, for ]z = 1/2, it 
follows from Eqs. (27)-(31a) that 

ff[~l.)(r; a) = - [1 + a + 2a(d2/dr2)][2I(1)(~; a)/a] 

and from Eqs. (25), (27), (9), and (14) that 

F(~(r; a) = (Vo/z)[2J~('~) + 3aJ3(z)] 

Here we focus on the small-tz regime, where the velocity and force (after an 
initial transient period) are slowly decaying in approximately exponential 
fashion, ~6~ as in stochastic theory. Initial condition effects on the velocity are 
displayed in Fig. 2, where the added force on the B particle due to I(~(z; a) 
(a "pu l l "  due to the bath particle initial velocity on the right) leads to a 
small increased (over a = 0) velocity of the particle. The effect is long-lived, 
but is small in magnitude for a massive B particle i ra  is small. This magnitude 
is of order/za [cf. Eq. (36)], so if/za ~ 1, the initial condition effect will be 
appreciable even for small/z. 

In Fig. 3 we compare the initial condition term I(~)(z; a) with the 
deviation 

D(1)(z; a) = -[ff<~)(r; a) + ~F<l)(~'; a)] (32) 

of the frictional force from time local friction due to the finite lifetime of 
K(~-). These are comparable in the initial time regime, but D(1)(r; a) persists 
well past the lifetime of I(1)(-c; a), since the former is associated with a 
moving B particle and the latter with a fixed particle. Past an initial period 
~- ~< 5, both terms are roughly 1-107o of the actual frictional force ,~<~v-'~: w,  a) 
for small a and/~. Our results conform with those of Cukier et al. <~6) and 
indicate that finite lifetime effects are typically numerically small even when 
more stringent formal conditions for their neglect are not strictly satisfied. 

It is instructive to consider alternate expressions for the average velocity 
and frictional force for finite a in terms of the corresponding quantities when 
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a = 0 (no initial condition effects). It is shown in Appendix A that Eqs. (25) 
and (29) f o r j  = 1 can be written as 

Fro(r; a) = V(~-; 0) + - -  
/za 

1 - 2/x 
[ V ( r ;  O) - 2Vor-~Jl(z)] (33) 

and 

/~a [Ffr(r; 0) + 4~Vor-lJ2(r)] (34) 

with the unperturbed average particle velocity and frictional force given by 

V(~; 0) -- ao(-dVo (35) 

and _Pf~(~-; 0 ) =  (~/tz)(d/dr)V(~-; 0) from Eqs. (16) and (17). For small tz, 
F(7.; 0) [ocGo(r)] will be slowly decaying on the ~- time scale, and for times 
long compared to the lifetime of J10-)/~- locK(r)] one has the approximation 

V(1)(T; a) --~ [1 + /za]V(~-; O) (36) 

and similarly, 

F(~)(r; a) ~ (1 + t~a)Fr,.(~'; 0) (37) 

Equations (36) and (37) are equivalent to a modified initial condition on the 
B particle velocity V(0) = Vo -+ (1 +/xa) Vo, due to the added velocity arising 
from the initial condition effect and applicable after an initial transient period. 
The origin of this effect is most clearly seen from the general result (17). 
For small/x the separation of time scales for a fixed and a moving B particle 
yields the approximate result 

fo F(~; a) -~ F(~; o) + (~/~Vo)F(~; 0) as/(s; a) (38) 

which for the present case with Eq. (27) yields again Eq. (36), 

gm(~-; a) -~ (1 + /m)V(r; 0) (39) 

for times long compared to the lifetime of I(~)(r; a). The exact velocity and 
the approximate velocity with modified initial condition are compared 
favorably in Table I. 

In the formal weak coupling limit (= Lira) 

/z -~ 0, r -+ o% /zr = fixed and O(1) (40) 

which enforces strict time scale separation, it is well known that V(z; 0) is 
exponential, (2,~1) as in the stochastic theory: 

Lim V(z; 0) = Vo exp(-/zr) (41) 
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Table I. Comparison of Exact B Particle Velocity 17(~)(~-;a)/Vo and Approxi- 
mate Velocity with Modified Initial Condition, Eq. (36), for the Single- 

Particle Case 

a = 0.25,/z = 0.1 a = 0.5, t~ = 0.05 a = 0 . 5 , ~  =0.1 

T Exact Approx. Exact Approx. Exact Approx. 

0 1.000 1.025 1.000 1.025 1.000 1.050 
4 0.747 0.742 0.882 0.878 0.771 0.762 
8 0.475 0.474 0.711 0.711 0.488 0.485 

12 0.302 0.299 0.576 0.574 0.312 0.307 
16 0.195 0.194 0.467 0.466 0.200 0.198 
20 0.124 0.124 0.378 0.377 0.128 0.126 
24 0.079 0.078 0.306 0.305 0.082 0.080 
28 0.051 0.051 0.248 0.248 0.052 0.052 

i 

In the same limit we find f rom Eq. (33) that  

Lim V(1)(r ;  a)  = Vo e x p ( -  tzT) (42) 

unless a is very large [ =  O(/L-~)]. Thus transient initial condit ion effects are 
completely suppressed since, al though their lifetime is long on the fixed- 
particle time scale ~-, they are both  short-lived on the moving-particle time 
scale ( ~/~-  1) [as is the friction kernel K(~-)] and negligible in magnitude when 
/x is made arbitrarily small [cf. Eq. (17)]. 

On the other hand, Rubin (2~'a) has shown that  for finite/z [lifetime of  K(~-) 
nonnegligible] 

Go(r )  = V ( r ;  O)/Vo = e -~l~  + Q - I [ A ( r )  + e -=IQ] (43) 

is correct to first order in Q -  1 = H(1 - / x ) ,  where 2x(r) is a certain combina-  
tion of  Bessel functions. I t  then follows f rom Eq. (33) that  when a > Q - l ,  

V(1)(r; a ) / V o  = e - ' / ~  + Q - I [ A ( r )  + (1 + a)e  - ' t 0  - a r - l J l ( r ) ]  (44) 

is correct to order Q-1.  For  nonnegligible a the initial condit ion correction 
can be comparable  to the contr ibut ion of  the finite lifetime of  K(~-) to the 
deviation o f  V(z)(~-; a) f rom the decay e x p ( - r / Q ) .  

4. M A N Y - P A R T I C L E  I N I T I A L  C O N D I T I O N  E F F E C T S  

In this section we examine initial condit ion effects when the average 
velocities of  the B particle and many bath particles initially deviate f rom their 
zero equilibrium values. Integral representations for the average velocity, 
frictional force, and initial condit ion terms are obtained for this case by 
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summat ions  over  a l l j  (noting that  a0 = 1) o f  the j -dependent  integrals given 
in Eqs. (25), (28), and (29). 

These sums can be evaluated for  several choices of  aj = gj(0)/Vo. Here  
we focus on the special but  interesting case where 

aj = afJJ; [ j [  /> 1 1,45) 

with ]a[ < 1. I f  we take a = exp(-d/ l ) ,  where d is the average interparticle 
spacing, then a Ijl = e x p ( - d ] j ] / l )  corresponds to a spatial exponential  decay 
in magni tude  of  initial deviations f rom velocity equil ibrium centered at the 
B particle. The characteristic decay length in units o f  d is L =- l/d, so that  
a = e x p ( -  1/L). 

With the choice Eq. (45) one requires the sums (17~ 

~ a j sin(2j0) = a sin(20) B(a, O) (46) 
j = l  

and 

~ a j cos(2j0) = [a cos(20) - a2]B(a, a) (47) 
j = l  

where B(a, a) = [(1 - a) 2 + 4a sin 2 0]-1. With these summat ions  in hand 
we obtain,  after some algebra, 

V(r ;  a) = Vo(2/z/Tr)[(1 - a) 2 + (1 - a)2/za] 

~ :r 

x dO cos(~" sin O)(cos 20)A(tz, O)B(a, O) (48) 
~'0 

for  the velocity; 

; a) = - ( ~  Vo)(2/zr).In ~2 dO sin(~- sin O)(sin 0 cos 20)A(tz, O) 

• [(1 - 2/0 + 2tz(1 - a + 2t~a)B(a, 0)] (49) 

for  the frictional force; and 

~ /2 

I(~-; a) = ~Vo(8a/zr) dO sin(~- sin 0)(sin 0 cos 20)B(a,  O) (50) 
,J0 

for  the initial condit ion term, which is plotted in Fig. 4 for  several decay 
lengths L. 

As in Section 3, unless t z is small, fffr(r; a) and I(r; a) will decay on the 
same t ime scale. Fo r  example,  for  t z = 1/2, it follows f rom Eqs. (49) and (50) 
that  I(~-; a) = - a F ,  r(~'; a). For  small tz, initial condit ion effects are now 
more  substantial  than in the single-particle case since I(r; a) is larger in mag-  
nitude and longer lived. These are displayed in Figs. 5 and 6 for  the velocity 
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Fig. 4. I n i t i a l  c o n d i t i o n  term I(~-; a)/~Vo ( ) versus r for sev- 
eral values of the scaled decay length L. The corresponding a 
values are 0.368, 0.819, and 0.905. (- - -)  e x p ( -  K~-), Eq. (53). 

V(T;a) and the deviation D(~-;a)=-[-Pfr(~';a)  + ~V(r;a)] from time 
local friction. When L is sufficiently large, I(~-; a) evidently dominates 
D(~-; a); this suggests that one may neglect the lifetime of K(~-) and approxi- 
mate Go(~') by exp(-/zr)  [Eqs. (35) and (41)] in Eq. (17) to obtain in this 

O . 8 -  X x  

:~ 0.6 

.~ =},/~= 

I>  0,4 - 

{ I { { { { } 
0 4 8 12 16 20 24 28 

"L- 

Fig. 5. Particle velocity F(r ;  a)/I"Io ( ) versus ~- for several/z and 
L values. (Compare with the unperturbed values V(~-; 0)/1/o in  
Fig. 2.) ( - - - )  The approximation (50a). 
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Fig. 6. Init ial  condi t ion  t e rm  1(% a)/r, Vo ( - - - )  and  devia t ion  f rom t ime  local fr ic t ion 
D(~-; a)/r~ Vo ( ) versus  T for severa l /x  and  L values.  O0" = 0; a) = - ~  Vo. 

regime (large L, small/x) 

V(r ;  a) ~-- Voe -"~ + (F/~) ds e-"<~-s>I(s; a), r >> 1 (50a) 

which retains the t ime dependence o f  1(% a). This is plotted in Fig. 5. 
We can also discuss initial condit ion effects on the basis o f  al ternate 

representat ions of  Eqs. (48) and (50). In Appendix  B we show tha t  the 
initial condit ion te rm (50) can also be writ ten as 

I ( % a )  = t~ V~ ~o dsJ2(~" _ S) e_~l~l (51) 
2~J_o~ ~- - s 

where 6 

,~ = ( 1  - a)(4a) -112 = sinh(1/2L) > 0 

I f  K is very large (a, L small), cor responding to rapid spatial  decay of  initial 
nonequi l ibr ium effects, the exponential  in Eq. (51) is strongly peaked at  
s = 0 and one has, as a, L ~ 0, 

1(7; a) ~_ ~-IJ2('~)(~Vo/2~) ds e - ~  
o o  

~- (r (52) 

6 One can easily show using Bessel function bounds <I4~ that ]l(r; a)[ ~< ( ~ VojX/8~2). 
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which is simply the contr ibut ion f rom the next-nearest  neighbors of  the B 
particle, IJl = 1 [compare  Eq. (27)]. If, however,  ~ is very small (a ~ 1, 
large L), a large por t ion of  the chain initially departs  f rom equilibrium. 
Natura l ly  I (7 ;  a) is then very slowly decaying rather  than a short-lived 
transient.  In Appendix  B we show that  as K ~ 0 (~ > 0), 

I(0-; a) ~- ~Voe - ~  ~ ~Voe -~I2L, r >> 1 (53) 

which is a decay on a macroscopic t ime scale (cf. Fig. 4). 
It  is also shown in Appendix  B that  the average particle velocity is 

related to V(~-; 0), the unper turbed  average velocity with a = 0, by 

f; V(r;  a) = �89 + #~ /a )  ds V(s; 0)e -~l*-*l + �89 - ~  (54) 

For  small tz, unless K is very small [ =  O(/,)], the slow decay of  V(s; 0) com-  
pared to tha t  of  the relatively strongly peaked factor  e x p ( - K f ~  - sl) yields 
the approx imate  result 

V(~"; a) = �89 + /~ /a)V(~- ;0)K-1(2  e -~)  + �89 roe - ~  

= [1 + ( ~ / ~ ) ~ / a l V ( ~ ;  0), K~ >> 1 (55) 

which, as in Section 3, is equivalent  to a modified initial condit ion for  the 
velocity and is identical with the general approx imate  result Eq. (38) applied 
to the present  case with f o d s  l(s; a) = Vo~a/a/~ f rom Eq. (51). General  
adherence to Eq. (55) is displayed for  small tz in Table II.  

The  behavior  of  the average B particle velocity can be examined in the 
weak coupling limit, Eq. (40), by inserting the velocity correlat ion function 
representat ion ~o) 

Table II. Comparison of Exact B Particle Velocity V(7;a)/Vo and Approxi- 
mate Velocity with Modified Initial Condition, Eq, (55), for the Many- 

Particle Case 

L = 1, t ~ = 0.05 L = 2, tz = 0.05 L = 3, tz = 0.025 

~- Exact Approx. Exact Approx. Exact Approx. 

0 1.000 1.058 1.000 1.154 1.000 1.126 
4 0.899 0.907 0.932 0.989 0.974 1.044 
8 0.738 0.734 0.799 0.800 0.916 0.942 

12 0.599 0.592 0.663 0.646 0.846 0.849 
16 0.486 0.481 0.543 0.525 0.773 0.767 
20 0.393 0.389 0.442 0.425 0.702 0.692 
24 0.318 0.315 0.359 0.343 0.636 0.624 
28 0.258 0.256 0.291 0.279 0.576 0.564 
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G0(z) = F(z; 0)/Vo 
/ . c o  

= (y/2t0[ ds [Jz(T -- s ) / (r  -- s)Je -~rsj (56) 
o - -  c t z  

where V 2 = t~2/(1 - 2t0, into Eq. (54). Under the weak coupling limit one 
again finds an exponential decay 

Lira V(r; a) = Voe -"f~r, K/t~ > 1 (57) 

so that initial condition effects are suppressed, as in the single-particle case, 
Eq. (42). 

5. C O N C L U D I N G  R E M A R K S  

in this paper we have considered the previously unexamined effects of 
local nonequilibrium bath initial states on the motion of a B particle in a 
linear chain by exact dynamical calculation. The resulting initial condition 
effects were found to be relatively long-lived, as is the friction kernel, but require 
a large initial deviation from equilibrium to exert a numerically pronounced 
influence on the motion. For a sufficiently massive B particle and weak 
initial deviations these effects can be approximately accounted for by a shift 
in the initial condition of the particle velocity. For extensive initial deviation 
from equilibrium the long-lived time dependence of the initial condition 
term must be retained in the particle equation of motion, while the finite 
lifetime of the friction kernel may be simultaneously neglected for a heavy 
particle. 

A P P E N D I X  A 

Here we outline the derivation of Eqs. (33) and (34). It is easily seen 
from Eqs. (25) and (31) that F(I~(T; a) satisfies 

V(l~(~-; a) = (1 + a/z)F(T; 0) + 2 a d 2 F ( r ;  O)/d~ -2 (A.1) 

where the unperturbed velocity V(~-; 0), Eq. (35), is given by 
__ (~/2 
V(r ;  0) = V0(2/x/~r) dO cos(r sin 0)(cos 20)A(t*, O) (A.2) 

,20 

By differentiation of Eq. (A.2) and use of the identity <~B~ 

Jl(~')/~" = (2/~) dO cos(r sin 0) cos ~ 0 (A.3) 

one finds that 

(d2/dr2)F( 'r;  0) = [/x2/(1 - 2tz)][V(~-; 0) - Vo(lZr)-zJ~('r)] (A.4) 
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which when inserted into Eq. (A.1) yields Eq. (33). The frictional force 
result, Eq. (34), follows by differentiation of  Eq. (33) with respect to ~- and 
use of Eqs. (16) and (27). 

APPENDIX B 

Here we outline the derivation of Eqs. (51) and (54) of the text. It is 
easily seen from Eqs. (50) and (9) that I(T; a) satisfies 

i ( r ;  a) - K2I(r; a) = -[VoJ2(r)/ ' r  - - E ( ' r )  (B.1) 

where K 2 = (1 - a)2/4a, with the boundary conditions that I(T; a) vanishes 
for ~- = 0 and ~- = 0o. This equation can be solved by Fourier transformation; 
one finds that 

f; •(.,; a) - d ,  e~I(~-; a) ; ( ~  + K~)-I/~(~) (B.2) 
co 

which can be inverted by the convolution theorem to find Eq. (51): 

fo I ( r ;  a) = (r ds [J2(~" - s ) / ( r  - s)]e -~l~t (B.3) 
- - o 0  

As K-+ 0 (K > 0), this can be analyzed with the aid of the identity (1.) 
(d/d-r)Jl(r) /r  = -J2(r ) / ' r  and the approximation that J l (T) /r  acts like a delta 
function on the slow time scale of ~- ~ to find 

I(~-; a) = ~V0 d foo 
2K ~ 3 dsJlO" - e-~i~J 

S )  

- o o  r - -  S 

~_ ~Voe - ~ ,  ~->> 1; K--~0 (B.4) 

The demonstration of Eq. (54) for V(r; a) proceeds along similar lines. 
It follows from Eqs. (48) and (23) that 

(d2/dr2)V(-r; a) - K2Go(-r)Vo = --�89 -- a) + 21~a]Go(r)Vo (B.5) 

whose solution by Fourier methods is 

f :s V0-; a) = �89 + t~ / a )  Go(s)Voe -~1~-~1 

= �89 + ~ / a )  ds V(s; 0)e -~L~-"L 
0 

f; ] + Voe- ~ ds ao(s)e - ~  (B.6) 

where we have used Eq. (35) and the time symmetry of Go(r). The last integral 
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in Eq. (B.6) is the Laplace t ransform (~0(~) -- fo  dr e-~Go(~-) of Go(r) and 

can be evaluated via Eqs. (13) and (14) as ~19~ 

Co(~) = [K + (~ /~Oo)g(K)]  -1 = (~ + t , ~ / a )  -1 (B.7)  
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